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A chiral superpropagator for pions 

PT DAVIES 
Department of Physics, Queen Mary College, Mile End Road, London, El 4NS, UK 

MS received 26 July 1972 

Abstract. We consider the superpropagator constructed from a chiral SU(2) x SU(2) 
invariant Lagrangian. We show in general how the complications arising from the derivative 
couplings can be separated from the nonpolynomial, nonderivative part ; and explicitly 
calculate the pion superpropagator for the unique choice of pion field that strict localizability 
requires. 

In an Appendix we show that an extension of the Efimov-Fradkin Green function 
representation will give us n multiplet to n multiplet second order functions from the super- 
propagator. 

1. Introduction 

The use of nonlinear realizations of chiral symmetry leads us into writing invariant 
Lagrangians which are nonpolynomial functions of the fields. The usual ‘effective’ 
Lagrangian prescription would tell us to expand in a power series, take just the first few 
polynomial terms and then use the tree-graph approximation (Gasiorowicz and Geffen 
1969 and references therein); but there is also interest in treating the Lagrangian as a 
more orthodox field theory object. This would involve putting in loops (Charap 1971) 
and then taking advantage of the fact that nonpolynomial Lagrangians may have 
renormalization advantages over most polynomial types (Salam 1971, Keck and Taylor 
1971, Lehmann and Trute 1972). 

We are interested here in chiral SU(2)x SU(2) and massless pions. The chiral 
invariant Lagrangian is nonpolynomial in the pion fields and thus the second order 
functions derived from it contain the exchange of any number of pions. The actual 
calculation of such objects is complicated by the fact that the interaction Lagrangian 
contains two derivatives and is a nonpolynomial function of a multiplet (triplet) of 
fields ; thus the combinatorics arising from Wick’s theorem become difficult. Delbourgo 
(1972) has shown that a straightforward extension of the usual integral-transform 
techniques will take care of the multiplets and we show here that we can also separate 
and handle the derivative complications for a certain class of second-order functions. 
These are the graphs that have n multiplets going to n multiplets, and can be obtained 
from the vacuum-to-vacuum graph, the so-called superpropagator, by taking derivatives 
with respect to propagators. In an Appendix we show how this follows from an extension 
of the Efmov-Fradkin representation of the Green functions (Efmov 1963, Fradkin 
1963). 

As far as the chiral invariance is concerned, the Lagrangian is arbitrary up to a 
redefinition of the pion field ; but the desire for a ‘good’ field theory may give a preferred 
coordinate system. Certainly, if we apply Jaffe’s (1967) condition of strict localizability, 
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we get a unique pion field (Lehmann and Trute 1972) and this is the one we will use to 
calculate the superpropagator. We have previously used this choice, the exponential 
parametrization, to calculate the superpropagator appropriate to a pion-nucleon 
interaction with one derivative (Davies 1972). 

In 9 2 we give the general method for calculating a pion superpropagator, in 5 3 we 
obtain a unique chiral Lagrangian and in 9 4 we give the results of the superpropagator 
calculation. We conclude in 8 5 with some brief remarks on the chiral SU(3) x SU(3) 
problem. 

2. The general method for pion superpropagators 

We will consider the simplest second-order function, the vacuum-to-vacuum super- 
propagator, as this contains all the multiplet and derivative complications and to some 
extent external lines can be taken into account by differentiating with respect to pro- 
pagators. The work of Delbourgo (1972) on extending the Efimov-Fradkin Green 
function representation to include multiplets of fields, and that of Delbourgo et al(1969) 
on derivatively coupled scalar theories, has made advances towards this, and we indicate 
in Appendix 1 how the simplest combination of their results would allow us to get 
n multiplet to n multiplet graphs from the superpropagator. 

We now describe our method for calculating the vacuum expectation value of the 
T* product of two normally ordered, nonpolynomial functions of the pion fields and 
their derivatives. 

Suppose we have the nonpolynomial function A(ni, a,nj)$: where the pv . . . are 
uncontracted space-time labels and the ab.. . are uncontracted isospin indices. (By 
‘uncontracted’ we mean uncontracted against other fields. The indices may, for instance, 
be contracted against numerical tensors but it is only the field dependence which 
interests us.) Further, suppose we want to calculate the object 

where the function A’ may differ from A and the free field propagator A is given by 

(01 T(ni(x)nj(y))IO) E (ni(x), njb)) E 6ijA(x- Y ) ,  

We proceed in the following stages: 
(i) Write A (and similarly A’) in the form 

A(ni, 8Lnj)$::: = T(n)P(ni, d,nj)$::: (2) 
where T(n) is a nonpolynomial function of the isoscalar n2 E nini, and P is a polynomial 
in the field derivatives and those fields whose isopin indices are either uncontracted or 
contracted against the field derivatives. 

(ii) Replace T(a) by a triple Fourier transform representation 
W 

T(n) = s d35F(t)exp(injtj) 
-Io 

(3) 

so that all the field dependence is in the exponential (Delbourgo 1972). Then, if we 
expand the exponential as a power series, use Wick’s theorem on the T* product of (l), 
and resum, we have 

m Io 

W)$::$j::: = d 3 t  1- d35‘T(5)T’(5’)Q,”::: exp(-t.&’A) (4) 
m 
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where 
1 a b  .., p q .  .. Q,”::: = Q(4 Ap, A v ,  A p v ,  . . . ,  ti, 5 . )  j pv ... p l  ... 

is a polynomial in the terms shown, its form depending on the P. The objects A,,, Apv ,  . . . 
are given by 

etc. 

At this point we note that, as the fields in the T* product are eliminated in pairs, then. 
as far as the isospin indices are concerned, Z(AYb,-J’q-, can only be an SU(2) invariant 
numerical tensor built from Kronecker deltas like dQp. It then follows that 

(6) p b  .., p q . . .  = C Q ( r ) u ( r y b . . . p q . . .  

r 

where the {ct(r)) are a complete, linearly independent set, each of the form bapdbq 
We can easily invert (6) to find the scalars Q‘” which will be of the formt 

Q(“) = Q(‘)(A, Ap, 4 ,  Apv, . . . , (5 . 5’1, (5 5’)’, 525’2, . . .). (7) 
(iii) We now replace the 4 ,  t‘ dependence of Q by differential operators acting on 

the exponential integral and so separate all the dependence on the polynomials P and P‘. 
We make the replacements 

(5 5’)” -+ ( 

The change (8a) is trivial and we prove (8b) in Appendix 2. If we make the above sub- 
stitutions (Q -+ 0)  we are simply left with 

(9) X(A)$::;;:::: = 1 E(~Y~, . .~~ . . ,Q(~) (A ,  . . , i?/dA, . . . )p  ”,,, pA,,,I(A) 
r 

where 

(iv) We now invert the relations (3) in order to rewrite (10) in terms of the original 
functions T(u). Then, changing to polar coordinates and using the fact that the T(u) 
are scalar functions of U = f i i  allows us to perform the angular integrals to arrive at 

Z(A) = jOw du jOw dvT(v)T’(iAu)uv sin(uv). 

This, then, is the only integral to be performed, and is the one we would get if there 
were no field derivatives and no P terms. It is effectively this integral which is handling 

t It will be important for (iii) that there is symmetry between 5 and e. Nonsymmetric terms, such as {’({’’)’, 
could occur if P contained more fields than P‘, but we can always avoid this by transferring powers of nz from 
T‘ to P‘. 
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the combinatorics of taking the two nonpolynomial functions together in the Tproduct. 
In the next section we shall demand that the nonpolynomial functions T and T' be 
entire functions, thus there are no singularities to be encountered in the integration 
ranges of (1 1) at any finite points. 

3. A unique chiral Lagrangian 

According to whether we follow Isham (1969) or Gursey (Chang and Gursey 1967) we 
would write a chiral invariant Lagrangian for massless pions as 

or 

yG = $F; Tr(a,ua,u+). (1 2b) 

These two are well known to be equivalent, and arbitrary up to a redefinition of the 
pion field of the form ni -, a(n2)ni. What we shall do is demand that the Lagrangian 
gives a strictly localizable field theory in the sense of Jaffe (1967) which means that it 
must be an entire function of the fields of order less than 2. We find the Gursey form 
(12b) most convenient for this analysis, and then having decided which pion field to use 
we can construct the interaction Lagrangian 

gn, = +(gijn) - tjij)apniarnj = Yi,(n)a,nia,nj. (13) 

As we would expect, we get the same result as Lehmann and Trute (1972) who apply 
localizability to the same Lagrangian in a different form. 

The unitary, unimodular Gursey matrix U is a 2 x 2 matrix function of iPn, where 
p = F; ' and 7c = nibi. The {q} are the Pauli 2 x 2 traceless, hermitian matrices. Now, 
there are two common methods for parametrizing a unitary matrix, both involving a 
hermitian matrix H. We have the exponential method eM, and the Cayley, or rational 
method (1 +iH)(l -ill)-'. If we further require unimodularity, then the exponential 
method requires H traceless, and for 2 x 2 matrices this is also true for the rational case. 
Thus we can write H = hiai for some real {hi}. Our problem is to parametrize Uin terms 
of the pion fields, and as any SU(2) vector formed from the x i  can only be proportional 
to ni we must have hi = a(n)ni; where a is some arbitrary scalar function of n = a. 

Thus we have U = exp(ia(n)lt) or 

1 - a2n2 + 2ian 
1 + a2z2 ' 

U = (1 +ia(n)lt)(l -ia(n).)-' = 

At this point we note that if we want entire (matrix) functions of the ni we can best 
use the exponential method, and we must have a even. We also require the entire 
functions to be of order less than 2 and this means that a can only be a constant. This is 
because an entire function of the form exp(x") is only of order less than n if a e n. 

Thus localizability requires us to use 

U = exp(ipn). (14) 

Substituting this into (12b) and equating with (12a) gives 

ViI(A) = ( l /2g2)(x2s i j -x ix j )T(x)  (15) 
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where 
T(z)  =  sin' /?n-P2n2) 

and this is the same as Lehmann and Trute (1972) obtain. 

4. The superpropagator calculation 

We now use the methods of 9 2 to calculate the superpropagator : 

V A )  = ( :%nt (XI : > :%nt ( Y )  :> (17) 
where 9int is the chiral interaction given by (13) and (15). We have no complications 
with uncontracted indices?, and the combinatorics give simply : 

a 0 = A4(d,,a, In A)’ 36 + 28A-+ 4A2- i 
where we have made the substitutions (8a)  and (8b), and have used the formal identity 

A’a,,E, In A = Aa,,a,A - d,,Aa,A. 

In the integral (1 1) we have T = T‘ given by (16), and if we define the dimensionless 

(19) 

quantity 2 = P2A we get the final result: 

C(2)  = (l/8/34)(8pi3, In Z)’H(Z)  
where 

and 
H ( 2 )  = (1 + 8Z2)C(Z)- 2 2  sinh(4Z) - sinh2(2Z)+ 82’ 

C(2) = 2 JO2’ $ sinh’x = chi(42) - ln(4yZ). 

We have checked to order Z4 that the above expression agrees with that obtained 
directly from (17) by expanding Yint to low order in /?. 

Before leaving this section we should note that there are some unresolved problems 
concerned with the Feynman rules that we are using, that is, using T* ordering with the 
interaction Lagrangian and renormalizing all tadpole contributions to zero by normal 
ordering, rather than using the canonical rules which involve T ordering and the 
interaction Hamiltonian. To second order in the interaction, which is the calculation 
that we perform, the work of Lazarides and Patani (1971) suggests that we are justified 
in using these naive Feynman rules, and preserve the Adler condition, provided that we 
interpret the distributions A,,,,, Ap, etc in the analytically renormalized fashion that they 
prescribe. It has to be seen what relation such rules have to the canonical formalism 
(Gerstein et a1 1971). 

5. The chiral SU(3) x SU(3) problem 

If we were interested in chiral SU(3) x SU(3) we would have formally the same Lagrangian 
as given by (12a) and (12b), we would just replace the zi by the octet of pseudoscalar 

t In a previous paper (Davies 1972) we outlined a calculation that involved nonpolynomial functions with 
uncontracted space-time and isospin labels. This was the case of a chiral invariant pion-nucleon interaction. 
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meson fields M i .  The problem of parametrizing the SU(3) Giirsey matrix is more 
complicated if we want the general solution (Barnes et a1 1972) but applying strict 
localizability would once again determine the exponential parametrization. 

Our general superpropagator method would proceed just as before, the triple 
Fourier transform (3) being replaced by an integral over eight scalar parameters, until 
we reached the equivalent of (IO). The problem we now meet is that the SU(3) equivalents 
of the scalar functions T would in general be functions of the two SU(3) Casimir in- 
variants. This means that we could not use the coordinate change from the Cartesian 
M i  to eight-dimensional spherical polars with their single invariant ; that is, the adjoint 
group SU(3)/Z(3) under which the M i  transform is isomorphic to a subgroup of the 
eight-dimensional rotation group SO(8). The SU(3) equivalent of the spherical polars 
(two invariants and six angles) with the associated Jacobian is known (Charap and 
Davies 1972) but so far has proved too complex to allow the integrals to be performed. 
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Appendix 1 

For a normally ordered interaction of scalar fields, :9(4):, which may in general be 
nonpolynomial, we can write the Efimov-Fradkin (Efimov 1963, Fradkin 1963) repre- 
sentation of the n point Green function, to order N in the interaction, as: 

where ni is the number of external lines at the vertex x i ,  and n = I: nit 
From now on we restrict our interest to second-order functions. For the case above 

we have 

and the generalization to Nth order will always be as simple as that from (A.2) to (A.1). 
We note that we can simply increase the number of external lines as: 

If we now have a scalar interaction of an R dimensional multiplet of fields 
(a = 1,2,. . . , R )  we could generalize (A.2) (Delbourgo 1972) to get 

where a, b, . . . are the multiplet components entering at vertex x ,  and we have used 
(4a ,  4;) = aabA to simplify the exponent. Note that differentiating with respect to A 
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again increases by one the external lines at each vertex; but does so in such a way that 
we get the sum over components of the multiplet. 

Yet another generalization of (A.2) concerns interactions which involve scalar fields 
and their space-time derivatives (Delbourgo et al 1969, Hunt et a1 1971). If we use the 
shorthand 4’’ = aP4, we can write 

where 

and the A,, etc are given by (5). To increase the number of external lines we could 
differentiate with respect to A, Aa, AV or Aav depending on what external lines we wanted 
to be derivatively coupled. 

Now, in our chiral Lagrangian we have both derivatives and multiplets and so the 
simplest combination of (A.3) and (A.4) would be achieved by the replacement 

in (A.4)’ and by putting the appropriate multiplet labels on the external lines. In par- 
ticular we can take the superpropagator 

into any n multiplet to n multiplet second-order function by differentiation as we would 
for (A.4). 

Appendix 2 

Consider 
m 

J = [ d35 d34’F(5)T’(5’)425‘2 exp( - 6 ,  G‘A). 
J-4; J - m  

Replacing 5l2 by A-2(a/a(i)2 acting on the exponential and using (3) gives 
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we can write 

and (8b) follows directly from this. 
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